
  

  

Abstract— There is a growing demand for automatic bridge 
inspection using intelligent detection technologies to replace 
manual inspection. This paper proposes an automatic bridge 
cable surface inspection system based on machine vision and 
deep few-shot learning technologies. The proposed system is able 
to acquiring high-quality images on bridge cables using high-
resolution cameras and artificial lighting, and can be easily 
integrated with our bridge cable climbing robots. A deep-
learning based few-shot object detection algorithm is adopted to 
perform cable damage detection. Cross domain knowledge 
transfer is exploit so that the deep learning model can learn to 
identify cable damage by given a few samples. To train and 
evaluate the proposed deep learning model, a few-shot bridge 
cable damage detection dataset is made. Experimental results 
show that our method can adapt fast to detect 3 type of typical 
cable damages (crack, dirt and patch damages). To the best of 
our knowledge, this is the first deep few-shot learning based 
method for bridge cable defect detection.  

I. INTRODUCTION 

 Cables are the main load-bearing members of cable stayed 
bridges. The damages on the Polyethylene envelopes of bridge 
cables cause corrosion inside cables and significantly shorten 
the service life. Thus, they need periodic inspection and 
maintenance during use. Manual cable inspection by inspectors 
is costly, time-consuming and risky. Autonomous inspection 
using robots is a promising way to tackle those problems. 
Although, many robotic platforms have been developed for 
bridge cable inspection that can climb along the cables to 
acquire data for diagnosing [1], the acquired data is still 
inspected manually. In addition, the number of literatures that 
report automatic cable damage detection methods is much 
smaller than that of literatures reporting robot platforms. 
Existing problems of automatic cable surface inspection 
research include: 

1) Insufficient research. Most existing methods use 
traditional machine learning methods without validation in real 
circumstance. Although, deep learning has been widely used in 
other visual detection tasks and surpasses traditional methods 
with large margins, we can hardly find deep-learning based 
cable damage detection methods in literatures. 

 
 

2) Lack of datasets. There are a variety of damages that can 
be found on bridge cables, and the appearance of damages on 
different bridges varies from case to case. The damage images 
are hard to obtain, and labeling those data needs professional 
operators and the procedure is time-consuming. Currently, 
there is no large scale open-source dataset for training and 
evaluating a cable damage detection method. This may be the 
reason why there is a lack of deep learning application within 
this research community. 

3) Unsatisfactory quality of acquired images. For the ease 
of data transmission and to simplify the structural design, most 
existing machine vision systems for bridge cable inspection 
uses IP cameras and uncontrolled lighting condition, as shown 
in Fig. 1(a). The quality of acquired images is unsatisfactory 
for subtle damage inspection. The changing intensity, complex 
background and partial shadow in the images bring difficulty 
in image processing. 

This work seeks to fill those gaps in fulfilling accurate 
automatic bridge cable surface inspection. The main 
contribution of this paper can be summarized as follows: 

1) A machine vision system is built for bridge cable 
inspection, which can acquire high-quality images using high-
resolution cameras and artificial lighting, and transmit the 
images to the ground control station wirelessly in real-time. It 
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Fig. 1 Comparison of the proposed cable inspection system with a 
traditional solution. (a) A typical cable inspection robot with four cameras 
acquiring images under natural illumination [2]. (b) Our cable inspection 
system is designed with a full-covered structure to ensure a stable imaging 
condition. (c) Our previously proposed cable climbing robot CCRobot-III 
[3]. (d) Our cable inspection system can be easily integrated with a  
climbing precursor similar to that of our CCRobot-III. 
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can be easily integrated to our bridge climbing robots [3] [4], 
as shown in Fig. 1(d). 

2) A deep few-shot learning based cable damage detection 
method is adopted, which can be trained with only a few 
samples. A few-shot cable damage detection dataset is built to 
train and evaluate the detection model following typical few-
shot learning protocol. To the best of our knowledge, this is the 
first deep few-shot learning solution for bridge cable surface 
inspection. 

II. RELATED WORK 

There is growing interest in developing bridge cable 
inspection robots. Most of the robots have equipped with 
digital cameras to record videos or take pictures on the cable 
surface to replace manual data collection. Typical examples are 
the robots reported in [2], [5], [6]. However, the procedure of 
finding the cable damages within the collected data still relies 
on human inspectors. The cameras equipped on the robots are 
usually exposed to the daylight, which result in the changing 
illumination, partial shadow, and complex background in the 
images. 

A few literatures have reported automatic bridge cable 
surface damage detection methods. Ho et al. [7] propose a 
cable damage detection system installed on a cable inspection 
robot. The system has 3 cameras embed on a closed box lighted 
by light emitting diodes (LEDs) to maintain a stable 
illumination. They propose a cable damage detection algorithm 
that combines image enhancement techniques with the 
principal component analysis (PCA) algorithm and a 
Mahalanobis square distance classifier. Li et al. [8] propose a 
machine vision system for a bridge cable inspection robot. The 
system contains 4 CCD cameras, and detect damages by means 
of Sobel edge detection and morphological operations. 
Furthermore, the scale-invariant feature transform (SIFT) 
algorithm is used to achieve the multi-image mosaic with 
partially overlapped regions in different defect images. Later, 
Li et al. [9] propose a cable damage recognition method that 
extracts 10 kinds of features including shape, texture and gray 
scale and inputs the features to a Support Vector Machine 
classifier optimized by the Particle Swarm Optimization 
algorithm. So far, most of the existing bridge cable damage 
detection methods are based on digital image processing 
techniques, feature engineering and traditional machine 
learning. But in real-world scenarios, the acquired cable 
images usually contain complex background and unstable 
illumination with a large variety of damage appearance, 
traditional methods can hardly achieve robust performance. 

Very recently, some researchers apply deep learning on this 
domain. Yu [10] adopts Faster R-CNN to detect bridge cable 
damage, and achieved a significant improvement on accuracy 
over traditional methods. The Faster R-CNN model is trained 
with over 800 images of 6 types of cable surface damages. Hou 
et al. [11] propose a Cascade Mask R-CNN based method for 
cable damage segmentation. They exploit transfer learning 
from concrete crack images to reduce the data needed for 
training the deep learning model. However, they still use more 
than 5600 cable damage images to train the model. 

According to our literature survey, the application of deep 
learning on cable damage identification has just been started 
and very few literatures can be found. The reason causing the 

lack of deep learning based solutions is probably the data-
hungry characteristic of deep learning models, as large-scale 
bridge cable damage dataset is extremely hard to obtain.  

In order to learn from a limited number of examples with 
supervised information, a machine learning paradigm called 
Few-Shot Learning (FSL) [12] is attracting more and more 
attention in machine learning research community. FSL can 
help to relieve the burden of collecting large-scale supervised 
data, and promote the application of deep learning in a variety 
of tasks that lacks large-scale data. The audience can refer to 
[13] for a recent literature review on FSL. 

In this work, we try to tackle the cable damage detection 
problem in a few-shot learning way. We propose a deep-
learning based few-shot object detection algorithm to perform 
cable damage detection. Cross domain knowledge transfer is 
exploit so that the deep learning model can learn to identify 
cable damage by given a few samples. To the best of our 
knowledge, this is the first deep few-shot learning based 
method for bridge cable defect detection 

III. PROPOSED METHOD 

In this section, the structure and components of the cable 
inspection vision system will be introduced, followed by the 
detailed description of our few-shot cable damage detection 
dataset and method. 

A.  Cable Inspection System 
We design a cable inspection system (depicted in Fig. 2) 

that can move along the bridge cables and carry a machine 
vision system to collect high-quality images of the bridge cable 
surface. The system can be easily integrated with a climbing 
precursor similar to that used in our CCRobot-III, as shown in 
Fig. 1(d). They are connected through steel wires and cooperate 
in such a way that the lightweight precursor moves rapidly to 
the top of the cable and fastens itself to the cable using gripping 
palms (the design and working principle of the gripping palms 
is described in [3]), then the cable inspection system lifts itself 
by rolling up the steel wires using two winches. The wheels 
and clamping mechanisms guide the cable inspection system 
the move along the bridge cable. The system is able to move 
smoothly on regular cables, dimpled cables, and cables with 
spiral wires at a maximum speed of 0.2 m/s.  

 The machine vision system equipped in the proposed cable 
inspection system consists of 4 high resolution industrial  

 
Fig.2 The structural design of the cable inspection system. 



  

 cameras (DO3THINK M3ST507-H), 4 LED lights and a 
micro personal computer (Intel NUC 8). The industrial 
cameras are uniformly distributed, so that the field of view of 
the 4 cameras covers the surface of the cable circumferentially. 
Each of the camera has a maximum resolution of 2248×2048 
and can reach submillimeter precision. To create a stable 
lighting condition, the cable inspection system is covered with 
a metal sheet to block out the daylight, and 4 LED lights are 
used of illumination. As a result, our system guarantees the 
high quality of the acquired images which is beneficial for 
image process and damage analysis. The acquired images are 
transmitted to the ground console wirelessly in real time for on-
line monitoring. As the size of the raw images output from the 
cameras is too large for real-time wireless transmission, they 
are compressed in advance. The full resolution raw images are 
saved to the hard disk of the micro personal computer for off-
line processing. A few examples of the acquired images are 
shown in Fig. 3. 

B. Deep Few-Shot Cable Damage Detection Model 
Traditional deep learning methods requires large amounts 

of annotated data to train the models. However, bridge cable 
damage occurs infrequently, and obtaining and annotating the 

damage samples are costly. This contradiction hinders the 
application of deep learning technology on cable damage 
detection.  

 Seeking to fill this gap, we propose a deep few-shot 
leaning method for cable damage detection. We adopt the few-
shot object detection method with attention-RPN and multi-
relation detector proposed by Fan et al. [14], and exploit cross-
domain knowledge transfer from general object detection tasks 
and industrial defect detection tasks to the cable damage 
detection task. The adopted few-shot learning model [14] is 
based on the Faster R-CNN [15] framework while the novel 
attention region proposal network (RPN), multi-relation 
detector, and contrastive training strategy are introduced, as 
shown in Fig.4. The model learns a general matching 
relationship between the support set and queries on both the 
attention-based region proposal network and the multi-relation 
detector. Specifically, the attention RPN computes depth-wise 
cross correlation between the support feature and the query 
feature, and use it as attention features to enable filtering out 
most region proposals belong to the background and non-
matching categories. At the end of the model, the detector in 
original Faster R-CNN framework is replaced with a multi-
relation detector to effectively measure the similarity between 
the generated region proposals of the query image and the 
support samples. The multi-relation detector includes 3 
attention modules, i.e., the global-relation head, the local-
correlation head, and the patch-relation head. The detailed 
structure can be referred to [14]. Furthermore, a novel 2-way 
contrastive training strategy is applied for distinguishing 
different categories and matching the same ones. The model 
has achieved state-of-the-art performance on several 
benchmark object detection datasets in terms of 5-shot and 10-
shot object detection. Another important characteristic of the 
model is that it can achieve relatively high accuracy for 
detecting objects of novel categories without retraining or fine-
tuning after trained on the 1000-categry FSOD dataset [14] 
(retraining and fine-tuning can bring better accuracy). 

C. Cross-Domain Knowledge Transfer 
 Although, the few-shot object detection method with 
attention-RPN and multi-relation detector used in this work can 
be used directly without fine-tune after trained with the FSOD 
dataset [14], the scenarios included in the FSOD dataset is quite 
different from our specific cable damage detection scenario. 
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Fig.3 Examples of cable surface images acquired by our cable inspection 
system. (a)and (c) are cable surface images without damage. (b) and (d) are  
cable surface images with a crack and scratch, respectively. 

Fig. 4 Illumination of the deep few-shot cable damage detection network framework. For a detailed illustration of the attention RPN and multi-relation 
head, the audience can refer to [14]. 



  

What’s more, there is no publicly available dataset for bridge 
cable damage detection so far, and it is hard to obtain cable 
damage samples even using a robotic inspection platform due 
to the infrequent occurrence of damages. To improve the 
accuracy of the cable damage detection model, our thought is 
to make use of existing datasets that are out of the cable damage 
domain but have some similar properties, to pretrain the model 
and fine-tine the model with a few samples of cable damages.  

We made a dataset to pretrain, fine-tune and test the cable 
damage detection model. Following the common few-shot 
learning paradigm [14], [16], our dataset contains base class 
images for pre-training the detection model, and novel class 
images for fine-tuning and testing the model. The base classes 
images are selected from existing open-source datasets other 
than bridge cable damages. In this research, we select images 
of 8 categories, including 6 types of industrial product defects 
from the Northeastern University surface defect database 
(NEU-DET) [17], civil structure crack images from the dataset 
made by Liu et al. [18], and images of pigmented skin lesions 
from the HAM10000 dataset [19]. Each category contains 300 
images, except for the skin lesion category (which contains 292 
images). We annotate the target region with bounding boxes 
following the PASCAL VOC format [20]. We take 50 images 

in each category for validation, and the others are used for 
training.  For the novel class, we collected 3 types of typical 
bridge cable damage, including crack, dirt and patch damage 
(actually includes pothole and surface corrosion), with 34, 29 
and 29 images, respectively. Those damage samples are either 
collected with our cable inspection system or previously 
collected using other equipment. In each category, 10 images 
are left out as support set. Some examples in this dataset are 
shown in Fig. 5. 

IV. EXPERIMENTS 

In the experiments, we firstly test the motion capacity and 
image acquisition function of the proposed cable inspection 
system. Secondly, we evaluate the accuracy of the proposed 
deep few-shot cable damage detection method by conducting 
few-shot damage detection test and fair comparison with 
another state-of-the-art few-shot object detection methods 
proposed in [16].  

A. Experimental Setup 
To validate the motion capacity and image acquisition 

function of the proposed system, we test our system on real 
bridge cables at the bridge cable test field of Chongqing 
Wanqiao Communication Tech Co. Ltd. and a long-span cable 
stayed bridge in Chongqing. A total of 352 images and 256 
images are acquired at the test field and real bridge, 
respectively, and a few damage samples are obtained, as shown 
in Fig. 6. The cable inspection system moves smoothly upward 
and downward along the cables, and the acquisition, data 
transmission and saving procedures are all conducted 
successfully. The audience can refer to our video to see how 
the system works on site.  

 We test the adopted deep few-shot learning method and 
compare it with another few-shot object proposed in [16] in 4 
common few-shot learning experiment setup including 3-way-
5-shot and 3-way-10 shot. (For the ease of notation, we call the 
method in [16] FR for short, and call the adopted method [14] 
FAM for short.) We also try to take away 3 base classes 
(crazing, pitted surface, and rolled-in scale) to see the effect of 
the number of reducing classes in the base set. The Average 
precision (AP), which are commonly used metrics for object 
detection are used to evaluate the detection accuracy of the 
proposed method. Specifically, AP is measured with AP25, and 
AP50. 

B. Implementation Details 
The proposed method is implemented with PyTorch 

developed by FaceBook. The CNN model is trained with 4 
NVIDIA Titan Xp GPUs. Hyper parameter used in model 
training and fine-tuning include: batch size (128), initial 
learning rate (0.002), training steps (60,000 for pretraining and 
100 for fine-tuning), and optimizer (SGD). 

   
(a)  (b)  (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

  

 

(j) (k)  

Fig.5 Some examples in our dataset. (a) to (f) are hot-rolled steel strip 
defects selected from NEU-DET dataset [17], they are inclusion, patches, 
scratches, crazing, pitted surface, roll-in scale. (g) is civil structure crack 
selected from [18]. (h) is pigmented skin lesion selected from HAM10000 
dataset [19]. (i) to (k) are cable crack, cable dirt and cable patch damage, 
respectively. 
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Fig. 6 Obtained cable damage samples 



  

 

TABLE II.  RESULTS (AP50) OF FEW-SHOT DAMAGE DETECTION 

Method Base 
class 

Fine-tune 
strategy 

Crack Dirt 
 

Patch 
damage 

FAM 
8 class 3w5s 0.315 0.257 0.447 

3w10s 0.326 0.247 0.497 

5 class 3w5s 0.153 0.095 0.349 
3w10s 0.131 0.156 0.341 

FR 
8 class 3w5s 0.091 0.0 0.091 

3w10s 0.227 0.0 0.441 

5 class 3w5s 0.182 0.0 0.182 
3w10s 0.339 0.182 0.266 

 
 FR is also implemented with PyTorch. For the training of 
FR, either NVIDIA RTX 2080 TI or Titan Xp GPUs are use. 
The hyper parameters in training and fine-tuning includes: 
batch size (64), learning rate at both training and fine-tuning 
(0.001), learning rate burn-in steps (1000), training steps 
(10000 for pretraining and 500 epochs for fine-tuning), and 
optimizer (SGD). 

V. RESULTS AND DISCUSSION 
The quantitative test results of the our deep few-shot cable 

damage detection method and the compared method are listed 
in Table I, and Table II.  

As can be seen from the results, FAM significantly 
outperforms FR in all the scores, which shows the superiority 
of FAM on few-shot learning ability. For both of the methods, 
they perform worst on dirt.  

To FAM, sometimes, the accuracy of 10-shot is worse than 
that of 5-shot, while for FR, the accuracy of 10-shot is always 
much better than that of 5-shot. This indicates that, for FAM, 
the pretraining procedure is more important than the fine-
tuning procedure, while it is on the opposite side for FR. 

When reducing the number of classes in the base set, the 
two methods behave differently. The accuracy of FAM drops 
when using less base classes, while the accuracy of FR 
benefits from the reduction of less base classes. This indicates 
the difference in the way that the two methods learn to 
recognize the features in different categories. As the number 
of output classes increases when more base classes or novel 
classes are added, the model has to predict more object 
categories. For FAM, the number of base classes does not 
affect the number of prediction categories. To this end, we 
think the FAM is a more flexible method. 

VI. CONCLUSION 
This paper proposes an automatic bridge cable inspection 

system based on machine vision and deep few-shot learning 
technologies. A machine vision system is designed for 
acquiring high-quality images of cable surface, and a deep 
few-show learning based cable damage detection method is 
proposed by adopting few-shot object detection techniques 
and cross-domain knowledge transfer. The proposed cable 
inspection system can be integrated well with our previously 
proposed robot and efficiently acquire high-resolution image 
on real bridge cables. The deep few-shot learning based cable 
damage detection method can be trained with base dataset 
from out of the target task and fine-tined with a few target 
samples to reach a relatively good accuracy.  The experimental 
result shows that our method is a superior and effective 
solution in few-shot cable damage detection. 

Future work can be done on the lightweight design of the 
proposed system and the further integration of the proposed 
system with our bridge climbing robots. The dataset will be 
extended by adding both more base classes and cable damage 
samples. Also, the defect detection algorithm should be 
improved for on-board real-time inferencing. 
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