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Abstract—While the advanced machine learning algorithms
are effective in load forecasting, they often suffer from the low
data utilization, and hence their superior performance relies on
huge datasets. Unfortunately, such huge scale datasets may not
be available for all tasks. In this paper, we consider the load
forecasting for a new user in the system by observing only
few shots (data points) of its energy consumption. We propose
to utilize clustering to mitigate the challenges brought by the
limited samples. Specifically, we first design a feature extraction
clustering method for categorizing the historical data. Then, the
load forecast for new users is conducted through a two-phase
Long Short Term Memory (LSTM) model, which inherits prior
knowledge from the clustering results. The proposed method out-
performs traditional LSTM model, especially when the training
sample size fails to cover a whole period (i.e., 24 hours in our
task). Extensive case studies on two real world datasets and one
synthetic dataset verify the effectiveness and efficiency of our
method. We also numerically suggest the minimal number of
shots to guarantee satisfactory forecast result.

Index Terms—Load Forecasting, Few-Shot Learning, Time
Series Analysis

I. INTRODUCTION

Load forecasting, a classical procedure in the electricity
sector, is the basis for efficient power system control as well as
effective electricity market operation. As a time series forecast-
ing task, its toolbox has been fundamentally reshaped by the
rise of deep learning technologies. For example, dependency
learning models such as recursive neural network (RNN) [1]
and feature learning models like convolutional neural network
(CNN) [2] are both capable of extracting complex statistics
and learning representative features from huge datasets. How-
ever, such models are often not very data efficient, i.e., deep
learning approaches suffer from poor sample efficiency in
stark contrast to human perception. As shown in Fig. 1, when
only provided with a short sequence of historical data, the
prediction results of deep learning models such as Long Short
Term Memory (LSTM) are far from satisfactory.

While such an observation is not surprising, we may utilize
the patterns in load profiles to help LSTM improve its perfor-
mance. Specifically, there are limited number of underlying
daily energy consumption patterns [3]. Thus, we may first
observe a short sequence of energy consumption profile from
a new user (an unknown sample) and try to identify its
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Fig. 1. 96 hours LSTM Forecasting on 12-shot Training Set

consumption pattern. Once such identification is successful,
the LSTM may utilize information in the pattern as rich
historical data and the short sequence as short term memory
to improve the performance. We term this task the clustering
enabled few-shot load forecasting.

Specifically, this work integrates ensemble clustering and
two-phase LSTM model in order to achieve better forecasting
accuracy based on few-shot samples. As shown in Fig. 2, these
limited samples will first be classified into similar clusters
with base class data. Then the LSTM model will first be
trained (this can be done offline and hence being a pretrained
model) with the long-term denoised mean-averaging data of
the specific cluster. By further fine-tuning the pretrained model
with the few-shot samples, the resulting two-phase LSTM is
able to utilize the prior knowledge of the cluster and the real
time information of the new user. Together, they guarantee a
remarkable performance.

The remainder of the paper is organized as follows. Section
II reviews the literature on time series forecasting, clustering
and few-shot learning (FSL). Then, Section III introduces
our proposed two-phase LSTM model in detail. To validate
the performance of few-shot forecasting, we introduce the
performance metrics, dataset overview and case study design
in Section IV. Comprehensive numerical studies are conducted
in Section V. Finally, Section VI gives the concluding remarks
and points out interesting future directions.

II. RELATED WORKS

We identify three major streams of related works. The first
one seeks to apply time series forecasting in the electricity



Fig. 2. The Framework of FSL-LSTM

sector. The second one investigates the time series clustering
techniques, while the third one targets to advance FSL.

A. Time Series Forecasting in Electricity Sector

Time series forecasting is applied in the electricity sector to
facilitate decision making [4]. Particularly, in electricity sector,
load forecasting has long been an important research topic.
Statistical and machine learning based methods are widely
applied in load forecasting. In [5], Huang and Shih presented
an Auto-regressive moving average (ARMA) procedure for
load forecasting characterizing non-Gaussian process. The
ARMA model can be extended to Auto-regressive Integrated
Moving Average (ARIMA) model which is widely used in
forecasting electricity load and market price [6].

Recently, machine learning techniques have become partic-
ularly popular in load forecasting. In [7], a support vector
regression model with empirical mode decomposition method
was proposed. In [8], Park et al. presented a multi-layered
perceptron artificial neural network (ANN) that interpolates
among the load and temperature data. In [9], Elman neural
network based forecast engine with empirical mode decom-
position was proposed as a novel method for predicting load
signal. Introduced by Hochreiter et al. in [10], LSTM has
received enormous attention in this area due to its capacity
of capturing long-distance statistical regularities, e.g., in [11]–
[13], LSTM based deep learning forecasting frameworks were
used in load forecasting.

B. Time Series Clustering

Time series clustering has been a hot topic in data mining.
Compared with the classical clustering method, time series
clustering is more complicated due to the temporal dynamics.
Therefore, on top of the common clustering methods, time
series clustering also cares about the similarity measurement
as well as the feature extraction.

The most classical time series clustering is based on tem-
poral similarity metrics, such as Euclidean distance (ED)
[14] and dynamic time warping (DTW) [15]. Although such
distance metrics are easy to implement in practice, they suffer
from fatal demerits: ED suffers from the dimensionality curse
[16], while DTW is overly sensitive to locally changes.

To overcome the demerits of similarity based clustering, fea-
ture extraction based clustering methods are investigated. Such

methods first extract the key features in the time series and
then conduct the clustering in low dimensional feature space.
Thus they can better capture the global feature of time series.
The most fundamental feature extraction tools include Discrete
Fourier transform (DFT) and discrete cosine transform (DCT)
[17]. Another widely adopted feature extraction tool is the
discrete wavelet transform (DWT) [18]. In this work, we
follow the novel feature extraction workflow based on DWT
in [19], where Hacine-Gharbi et al. proposed wavelet cepstral
coefficient (WCC) for feature extraction, and then utilized a
hidden Markov model for electricity appliance identification.
This procedure achieves a completeness ratio of 98.13% when
the decomposition level is five.

C. Few-Shot Learning

The objective of FSL is to learn new tasks supported by
only a few samples with supervised information. FSL enables
the learning of rare cases and relieves the burden of large
scale data collection. One approach is to constrain hypothesis
spaceH by prior knowledge in the learning process. For exam-
ple, Caruana proposed Multitask Learning [20], an inductive
transfer mechanism to improve generalization performance
by using domain information contained in training signals of
related tasks.

Another approach is to alter search strategy in hypothe-
sis space H by using prior knowledge to provide a good
initialization or guiding the search steps [21]. To guide the
search steps or alter the search strategy by prior knowledge,
a popular approach is to apply meta-learning to continuously
refine the parameters according to the learner’s performance.
One representative method is model-agnostic meta-learning
(MAML), proposed in [22]. Many efforts have also been
devoted to achieve FSL by fine-tuning the parameter from
a good initialization, including those based on generated-
adversarial network (GAN) [23] and convolutional neural
network (CNN) [24], [25]. However, to our best knowledge,
few attempts have been made to extend these approaches to
LSTM for time series forecasting. In our work, we make use
of historical data to provide a good initialization which enables
LSTM to perform fast adaption to novel load forecasting tasks.



III. FSL FOR LOAD FORECASTING

Our proposed FSL framework consists of two major compo-
nents: the basic ensemble clustering, and a two-phase LSTM
forecasting network. For the first component, we use compact
selected features extracted from wavelet analysis and other
statistic descriptors, as shown in Fig. 3. For the second com-
ponent, as we have mentioned, we follow [10] to implement
the LSTM, utilizing wavelet denoising and data enhancement.

A. Feature Extraction for Clustering

1) Discrete wavelet analysis: The whole procedure starts
with an ensemble clustering where few-shot samples are clus-
tered with historical data. The historical data are segmented
according to the length and the time stamps of the few-shot
samples (k-shot) in order to represent the same period of
time in a day. To reduce the dimensionality of the sequence
set, wavelet analysis is adopted to project the original data
onto a lower dimensional feature space. We compute three de-
scriptors, namely discrete wavelet energy (DWE), log wavelet
energy (LWE) and WCC.

As proposed in [19], we follow a feature extraction work-
flow based on wavelet analysis (shown in Fig. 3). Instead
of applying DWT, we use discrete wavelet package trans-
form (DWPT) [26] to decompose original time series into a
balanced tree structure. In each level j, the total number of
wavelet samples is equal to 2j , where each leaf node represents
a set of wavelet coefficients either in high or low frequency.

Fig. 3. Feature Extraction Workflow

Consider a DWPT balanced tree with total L levels of
decomposition, the DWE value of a specific set of wavelet
coefficient at level j, denoted by E (dj), with Nj number of
detailed coefficients within the level, is calculated as:

DWE (dj) =
1

E

Nj∑
n=1

‖ dj [n]‖22, 1 ≤ j ≤ L (1)

where the l2-norm of each wavelet coefficient dj is scaled to
the total energy E of all levels. The LWE is then calculated
by applying log10 to DWE feature vectors, in order to achieve

decorrelation of the energy values between different levels,
which is defined as:

LWE (dj) = log

 1

E

Nj∑
n=1

‖ dj [n]‖22

 (2)

Based on the result of LWE, we further calculate the WCC
feature vectors by applying DCT:

WCC (dj) = DCT

log
 1

E

Nj∑
n=1

‖ dj [n]‖22

 (3)

After the derivative of WCC, we combine DWE, LWE and
WCC feature vectors into one feature vector and apply Princi-
ple Component Analysis (PCA) to reduce the dimensionality
of the feature space.

2) Other statistical feature: To represent time series data
in a more comprehensive way, we further introduce several
statistical features directly extracted from the time domain.

• Seasonal and trend indicators: According to [27], seasonal
and trend decomposition based on loss (STL) suggests
that any time series Xt = {x1, x2, · · · , xN} can be
decomposed in to three additive components: Xt =
Tt + St + Et, where Tt is the tendency component, ST

is the seasonal component, while Et stands for residual
component. To measure the trend and periodical behavior
of the original series, we define the following indices
respectively:

sdeg = 1− var (Et)

var (Xt − Tt)

tdeg = 1− var (Et)

var (Xt − St)

(4)

• Skewness: The skewness is used to represent the heavy
tail (asymmetric) phenomenon of a probability distribu-
tion. For a normal distribution, the skewness is equal to 0.
In this perspective, the skewness can be used as a measure
of non-Gaussian property. The skewness of the random
variable X is defined as:

skew(X) = E

[(
X − µ
σ

)3
]

(5)

• Sample entropy: As stated in [28], sample entropy is a
metric measuring the non linearity of time series. For
a time series Xt = {x1, x2, · · · , xN}, we sample the
original series into N −m+ 1 segments with a template
vector of length m defined as:

Xm(i) = {xi, xi+1, · · · , xi+m−1} , 1 ≤ i ≤ N −m+ 1
(6)

We further compute the distance between segments i, j,
i 6= j as:

d [Xm(i), Xm(j)] = max
k=0,...,m−1

‖xi+k − xj+k‖ (7)

For a given threshold r, we count the number of segments
pairs with d [Xm(i), Xm(j)] < r as Nm, and the number



of pairs with d [Xm+1(i), Xm+1(j)] < r as Nm+1. For
finite number N , the sample entropy is then calculated
as:

SampEn = − ln
Nm

Nm+1
(8)

Considering the extreme few-shot scenario (i.e., 12 shots),
where the total number of segments may be limited for
large m, we directly set m = 2 and r = 0.2× std(Xt).

• Hurst exponent: As a coefficient describing autocorre-
lation, Hurst exponent is a non linear metric for long
term dependency of a sequence [29]. We denote the
standardized series as

X
′
(t) =

X(t)−mean(X(t))

std(X(t))
, (9)

and calculate the cumulative sum sequence as

Y (t) =
∑k=1

i
x

′

i (10)

The Hurst exponent is then calculated as:

K =
2

N
log(max(Y (t))−min(Y (t))) (11)

3) Ensemble clustering: :Note that clustering models such
as K means, Gaussian mixture model (GMM-EM), etc. have
high sensitivity to initial values. To acquire stable clustering
results, we follow a clustering ensemble method based on
hypergraph algorithm introduced in [30], namely clustering
based similarity partition algorithm (CSPA). To ensemble
the clustering results generated by multiple models and at-
tempts, binary similarity matrices H are formulated to capture
the pairwise similarity between clustering results, while co-
association matrix are computed as S = HH T . Then a
hypergraph is generated based on co-association matrix, where
vertex represents time series sample, and edge represents the
similarity between objects. Finally, METIS [31] algorithm
based on graph theory is used to obtain the final clustering
results. The structure of ensemble clustering is visualized in
Fig. 4.

Fig. 4. Ensemble clustering

B. LSTM based Few-shot Forecasting

1) Wavelet denoising: To achieve FSL, we attempt to
acquire prior knowledge about the characteristics of few-shot
series, in order to generate a pre-trained model. By averaging
all historical data from the clustering results, we obtain one
sample series for each cluster, namely prototype series. The
model then obtains a set of denoised prototype series and few-
shot time series by performing DWT with hard threshold. The
continuous wavelet transform (CWT) is given by:

H(x) =
1

|
√
ζ|

∫
x(t) · ψ

(
t− τ
ζ

)
dt (12)

where signal x(t) has a wavelet transform result as a function
of time (t). ψ is a mother wavelet continuous in both time and
frequency domain and ψ represents the complex conjugate of
ψ. ζ is the scale parameter. τ is the transitional parameter. The
DWT of the signal x(t) is calculated by passing it through high
and low pass filters. The decomposition of DWT is chosen to
stop when the coefficients in the output are corrupted by edge
effects caused by signal extension, where lx is the length of
signal and lf is the length of filter.

level =

⌊
log2

(
lx
lf

)⌋
(13)

The hard threshold is implemented with T denoted as the given
threshold.

ρT(x) =

 x+ T x ≤ −T
0 |x| ≤ T,

x− T x ≥ T
(14)

Fig. 5. Two-Phase LSTM

2) Two-phase LSTM: The model is designed to make full
use of prior knowledge extracted from unsupervised ensemble
clustering. Allocated in the same cluster ca, a set of historical
data XS1 , XS2 ..., XSn with abundant data points and few-
shot time series XQ = (x1, x2..., xm) share similar features
that can be learnt as prior knowledge by two-phase LSTM
(structure shown in Fig. 5).

• Phase 1: The prototype series of historical data in ca,
Xc, is used to train the basic LSTM’s network weights
to θ0, where the network possesses the ability of fast
adaption to novel forecasting task in phase 2.



• Phase 2: The few-shot time series XQ are split into
(XQ

train, X
Q
test), where

∣∣∣XQ
train

∣∣∣ � mini
∣∣XSi

∣∣; XQ
train

fine-tunes θ0 to θ1; XQ
test is used in the testing of few-

shot task.

IV. SETUP FOR CASE STUDY

In this section, we introduce the performance metrics and
overview the datasets for our case study.

A. FSL Task Formulation

The experiment tries to discover the performance of the
proposed FSL under different levels of data shortage, namely
trained with 12, 24, 48, 96, 192 shots of training data. For few-
shot time series XQ in k-shot learning scenario, (x1, ., xk) is
used in unsupervised clustering together with historical data. In
two-phase LSTM fine-tuning, the prototype series of clustering
results supports the base training of LSTM model. The k-shot
data is used in the second phase to fine-tune LSTM. A fixed
section of XQ with length 72, (xn+1, ., xn+72), n > k is used
as ground truth in testing.

B. Metrics

Root Mean Square Error (RMSE) is one of the most used
performance evaluation factors for forecasting or analyzing
time series [10]. For n testing data, denote px as the ground
truth and p̂x as the corresponding forecast value, such that
x = 1 to N , the RMSE is given as,

RMSE =
1

n

n∑
x=1

√
(px − p̂x)2 (15)

In our FSL settings, to describe model’s overall performance
of multiple predictions on different time series in ca, Mean
Root Mean Square Error (MRMSE) is introduced. For M time
series, the MRMSE is given as,

MRMSE =
1

Mn

M∑
i=1

n∑
x=1

√
(pix − p̂ix)2, i ∈ ca (16)

To eliminate outliers in our result, we cover the 95% con-
fidence interval by adding or subtracting the MRMSE by two
standard deviations and deleting values outside the interval.
The mean and standard deviation of the remaining RMSE are
then recalculated, and we use MRMSE ± std(RMSE) as
our final metric to represent forecasting performance.

C. Training Details

The clustering model is trained on an ensemble clustering
model consisting of K-means, GMM-EM, hierarchy clustering
and affinity propagation, where the maximum level of DWPT
L = 5. The following LSTM network applies Adam optimizer
with 50 dimension of inner cells.

Firstly, an ablation experiment is conducted on the two real-
world datasets in order to compare our model with traditional
LSTM. Then, our model is applied on the synthetic dataset
to verify a theoretical lower bound of shots. Lastly, we
perform a sensitivity analysis on the proposed model based

on the experiment, which investigates the influence of cluster
compactness on forecast accuracy. For LSTM, we employ
the same network structure as the two-phase LSTM in the
proposed method, which adopts 50 units with Adam optimizer.
All the tests are performed on a Linux server with an Intel
Xeon E5-2620@2.10 GHz and 128GB of RAM.

D. UMass Smart Dataset

UMass Smart Dataset (2017 release) [32] includes minute-
level electricity usage data from more than 400 anonymous
homes. The dataset is sliced to have the time span from Jan. 1,
2016 to Mar. 10, 2016. During this period 114 homes’ records
are available. The granularity is set to be 20 minutes, 1 hour,
2 hours by averaging over data:

ya[m] =
1

k

mk+k−1∑
i=mk

m[i] (17)

The FSL-LSTM is trained with 12, 24, 48, 96, 192 shots. A
fixed section of XQ with length of 72 is used for testing. Fig.
7 visualizes the UMass electricity load.

Fig. 6. UMass Smart Dataset with Different Granularity

Fig. 7. Pecan Street Dataset with Different Granularity



TABLE I
COMPARISON OF PREDICTION ACCURACY ON UMASS SMART DATASET IN K-SHOT LEARNING SCENARIO

Dataset Umass
Granularity Methods 12shot 24shot 48shot 96shot 192shot

20 minutes FSL-LSTM(Ours) 0.883±0.317 0.999±0.366 0.959±0.296 0.931±0.336 1.004±0.377
LSTM 1.177±0.483 1.240±0.443 1.499±0.211 1.096±0.340 1.004±0.339

1 hour FSL-LSTM(Ours) 0.693±0.306 0.738±0.314 0.423±0.228 0.551±0.330 0.317±0.123
LSTM 0.748±0.400 0.844±0.404 0.510±0.155 0.437±0.205 0.434±0.179

2 hours FSL-LSTM(Ours) 0.528±0.233 0.339±0.179 0.347±0.146 0.308±0.086 0.308±0.197
LSTM 0.695±0.352 0.283±0.161 0.754±0.277 0.335±0.127 0.321±0.144

TABLE II
COMPARISON OF PREDICTION ACCURACY ON PECAN STREET DATASET IN K-SHOT LEARNING SCENARIO

Dataset Pecan Street
Granularity Methods 12shot 24shot 48shot 96shot 192shot

20 minutes FSL-LSTM(Ours) 0.388±0.190 0.308±0.161 0.324±0.185 0.218±0.104 0.312±0.164
LSTM 0.662±0.294 0.675±0.420 0.396±0.174 0.314±0.141 0.338±0.194

1 hour FSL-LSTM(Ours) 0.418±0.187 0.363±0.154 0.512±0.188 0.515±0.198 0.466±0.314
LSTM 0.624±0.287 0.521±0.230 0.670±0.212 0.543±0.214 0.593±0.282

2 hours FSL-LSTM(Ours) 0.422±0.226 0.533±0.260 0.337±0.217 0.416±0.203 0.382±0.143
LSTM 0.536±0.316 0.465±0.263 0.617±0.283 0.527±0.296 0.394±0.129

E. Pecan Street Texas Dataset

Pecan Street Dataport [33] includes minute-level electricity
usage data from 310 units in Texas. The dataset is sliced to
have a time interval from Jan. 1, 2016 to Mar. 10, 2016. The
granularity is set to 20 minutes, 1 hour, 2 hours by averaging
over data. The FSL-LSTM is trained with 12, 24, 48, 96, 192
shots. A fixed section of XQ is used for testing. Fig. 8 shows
the visualization of Pecan Street electricity load.

Fig. 8. Synthetic Dateset with Different Periods

F. Synthetic Dataset

Since the real-world power load data of users is not always
based on a 24-hour cycle, we designed a synthetic dataset,
which consists of sinusoidal waves where Gaussian noise is
constructed to explore the influence of data cycle and training
length on the model performance. The periods of time series
are set to be 10, 15 and 20 sample points.

V. NUMERICAL RESULTS AND ANALYSIS

The experiment conducted on Pecan Street and Umass
dataset suggests that FSL-LSTM outperforms traditional
LSTM in most FSL scenarios. The detailed MRMSE results in
Table I and II show significant improvements in precision and
variance for forecasting 20 minute, 1 hour and 2 hour-level
energy load in FSL. As shot length increases, the proposed
method is followed more closely by traditional LSTM.

A. Influence of k Shot

To study the effect of number of training sample points for
novel time series, we consider k = 12, 24, 48, 96, 192 for
XQ

train and measure the overall performance using MRMSE.
The results are shown in Fig. 9 and Fig. 10.

When considering a very small number of training sample
points in time series forecasting, e.g., for k = 12, we observe a
large gap between the proposed method and traditional LSTM,
yet FSL-LSTM also experiences a decrease in precision and
variance. This is expected as given just 12 data points with
granularity ranges from 20 minutes to 2 hours, it is difficult to
learn the seasonality of power load of households or facilities
with efficiency. The large gap in extreme few-shot scenario
shows the high efficiency of FSL-LSTM to combine prior
knowledge and specific k-shot samples during training.

B. Influence of Granularity

Since we extracted only short segments of sequence from
historical dataset in order to match with the length and time
stamps of few-shot time series, when the length of the few-
shot series fails to cover a whole period, namely T , of the
ground truth series, clustering results at first stage does not
necessarily guarantee the following trends are similar to each
other. Theoretically, to avoid mis-labelling, the length of few-
shot series for fine-tuning, denoted by N , is expected to be
N ≥ T

M for a fixed number of granularity M . This lower



TABLE III
COMPARISON OF FSL-LSTM PREDICTION ACCURACY WITH

k-shot 12 24 48 96 192 S-score
Kmeans 0.534±0.371 0.424±0.403 0.350±0.359 0.345±0.314 0.336±0.282 0.1385
Agglomerative 0.509±0.175 0.414±0.307 0.338±0.274 0.326±0.178 0.315±0.286 0.3843
GMM-EM 0.522±0.427 0.426±0.311 0.344±0.328 0.347±0.266 0.354±0.185 0.1230
Affinity Propagation 0.519±0.293 0.426±0.276 0.345±0.326 0.345±0.314 0.345±0.271 0.2138
Ensembling 0.500±0.242 0.407±0.143 0.314±0.172 0.306±0.220 0.316±0.197 0.3622

Fig. 9. Case 1: Normalized Quantile Loss on Umass Dataset

Fig. 10. Case 2: Normalized Quantile Loss on Pecan Street Dataset

bound is particularly phenomenal in our synthetic dataset,
while not violating the observation in real-world dataset.

When granularity is small, the ideal length of few-shot
samples that yield acceptable MRMSE is significantly larger
than those of the large ones. Furthermore, the granularity
and few-shot length pairs reach the most benign model per-
formance when their products fully contain one or multiple
periods of the historical dataset. This phenomenon is much
more significant on our synthetic dataset. As shown in Fig. 12,
the model reaches the lowest MRMSE when N = PT/M ,
where P denotes any positive integer. The MRMSE then
remains relatively steady after N reaching the threshold, which
means that our theoretical assumptions do not violate empirical
observation.

Fig. 11. Case 3: Normalized Quantile Loss on Synthetic Dataset

C. Influence of Cluster Compactness

As an FSL forecasting model, the prediction accuracy of
the fine-tuned model depends on the quality of the prior
knowledge. One rational intuition is that the compactness of
clustering results is positively correlation with MRMSE. To
investigate the hypothesis, we conduct single factor sensitivity
analysis by changing different clustering models on UMass
Smart dataset with 1 hour granularity. To quantify the com-
pactness of clusters, Silhouette score (S-score) is introduced.
The results are shown in Fig. 13.

Fig. 12. Case 4: Normalized Quantile Loss for Different Clustering Models

Table III suggests that the S-score of ensemble clustering
is higher than those of traditional clustering models due to
elimination of some edge samples. Moreover, the standard



deviation of RMSE has a negative correlation with S-score.
This means that the larger the S-score, the more likely the
denoised prototype can capture most of local features inside
the cluster. In addition, MRMSE reduces slightly when S-score
improves. However, the difference of MRMSE for a fixed shot
between different clustering models is not significant.

VI. CONCLUSION AND FUTURE WORK

The ability to quickly adapt to time series forecasting tasks
with limited customized samples is an important property for
electricity load forecasting and other practical applications.
We contribute to this field by proposing the FSL time series
forecasting based on LSTM. The proposed method leverages
the existing power load records through ensemble clustering
to gather an ability to efficiently solve few-shot forecasting
tasks on previously unseen time series. Numerous studies
suggest that, the proposed method is able to largely outperform
its baseline on 2 major electricity load datasets. Moreover,
we empirically interpret FSL-LSTM’s performance from two
aspects, k-shot setting and granularity of data.

In the future, it would be interesting to explore more so-
phisticated few-shot learning techniques such as [22], [34] for
load forecasting. Besides, by combining FSL with incremental
learning [35], a robust AI blue print can be provided to power
grid system, such that models can be swiftly generated through
FSL when data scale is small, and be fine-tuned locally as data
scale increases.
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